Iterative Visual Relationship Detection via Commonsense Knowledge Graph
نویسندگان
چکیده
منابع مشابه
Know2Look: Commonsense Knowledge for Visual Search
With the rise in popularity of social media, images accompanied by contextual text form a huge section of the web. However, search and retrieval of documents are still largely dependent on solely textual cues. Although visual cues have started to gain focus, the imperfection in object/scene detection do not lead to significantly improved results. We hypothesize that the use of background common...
متن کاملCommonsense Knowledge Representation I
Significant advances in artificial intelligence, including machines that play master level chess, or make medical diagnoses, highlight an intriguing paradox. While systems can compete with highly qualified experts in many fields, there has been much less progress in constructing machines that exhibit simple commonsense, the kind expected of any normally intelligent child. As a result, commonsen...
متن کاملCommonsense Knowledge Representation II
Early attempts to implement systems that understand commonsense knowledge did so for very restricted domains. For example, the Planes system [Waltz, 1978] knew real world facts about a fleet of airplanes and could answer questions about them put to it in English. It had, however, no behaviors, could not interpret the facts, draw inferences from them or solve problems, other than those that have...
متن کاملCommonsense Knowledge Base Completion
We enrich a curated resource of commonsense knowledge by formulating the problem as one of knowledge base completion (KBC). Most work in KBC focuses on knowledge bases like Freebase that relate entities drawn from a fixed set. However, the tuples in ConceptNet (Speer and Havasi, 2012) define relations between an unbounded set of phrases. We develop neural network models for scoring tuples on ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Big Data Research
سال: 2021
ISSN: 2214-5796
DOI: 10.1016/j.bdr.2020.100175